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In magnetically frustrated compounds the pairwise

exchange interactions of spins cannot all be mini-

mized simultaneously in any microscopic moment

configuration. This dilemma may already arise in

the case of nearest neighbor interactions when the

property of geometric frustration inheres in the lat-

tice like in, e.g. trigonal, Kagomé, checkerboard or

pyrochlore type lattices [1, 2]. In these cases the

fundamental building blocks like triangles, plaque-

ttes or tetrahedrons share common sites such that

there is no unique state that minimizes all bond

energies to nearest neighbor sites. Consequently,

there will be many states which have approximately

equally low energies, i.e., frustration leads to a large

degeneracy of low lying states. This entails large

quantum fluctuations which may prevent the ap-

pearance of magnetic order.

Frustration can also arise through the competition

of longer range interactions even in simple struc-

tures like the two-dimensional (2D) square lattice.

At low temperatures there are basically two alter-

natives: quantum fluctuations may select one of the

degenerate states as the true magnetic state (‘order

by disorder’) or they may lead to an ordered quan-

tum phase with a new type of order parameter that

is of the ‘hidden order’ type, i. e., it does not display

a macroscopic modulation of the spin density.

In this report we first discuss the effects of frus-

tration in the local moment J1-J2 model on the 2D

square lattice. Here, we use both exact diagonaliza-

tion for finite clusters, the finite temperature Lanc-

zos method (FTLM), as well as analytical spin wave

methods. In particular, the high field magnetization

and magnetocaloric effect in the various phases are

investigated which are relevant for a class of layered

vanadium oxide compounds. In addition, a theory

for the itinerant frustrated 3d- heavy fermion com-

pound LiV2O4 will be discussed. It is based on

ab-initio LDA calculations and the self-consistent

renormalization (SCR) approach. It will be used

to explain inelastic neutron scattering results which

give direct insight into the origin of frustration in

this compound.

Fig. 1: Phases of the spin-1/2 2D square lattice J1-J2 model
as function of φ or J2/J1. The FM, NAF and CAF order
(arrows) have wave vectors Q = (0,0), (1,1) and (1,0) or
(0,1) (in units of π/a) respectively. The grey sectors (J2/J1

values indicated on the outside) represent the stacked-dimer
phase (right sector) and the spin-nematic phase (left sec-
tor). The dotted line corresponds to experimental values
ΘCW = (J1 +J2)/kB for the Zn compound [10] with two pos-
sible phases at φ+ (CAF) and φ− (NAF). Full circles refer
to CAF phases determined by neutron scattering [11] (From
Ref. [4]).

Frustrated J1-J2 magnetism on the square lattice

The idea of a possible RVB state in the cuprates

has led to a search for quantum spin liquids in 2D

antiferromagnetic S = 1/2 compounds. In reality,

most of them exhibit an ordered state with either

magnetic or exotic hidden order. In particular, the

nearest-neighbor Heisenberg model on a square lat-

tice has an antiferromagnetic ground state, the Néel

state. A more general case is the 2D J1-J2 model

[3, 4, 5, 6] with an additional next-nearest-neighbor

exchange interaction J2. Such a model has a con-

trol parameter J2/J1 which may destabilize the Néel

state of the J2 = 0 Heisenberg model. This leads to

various other magnetically ordered or hidden order

states comprising a rich phase diagram in the J1-J2

plane (Fig. 1). Such states also have an interest-

ing behaviour in an external field depending on the

amount of frustration controlled by J2/J1.

Recently, various layered vanadium compounds

have been found which can be well described by
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the J1-J2 model. They are of the type Li2VOXO4

(X = Si, Ge) [8] and AA′VO(PO4)2 (A, A′ = Pb,

Zn, Sr, Ba) [9, 10] and consist of V-oxide pyramid

layers containing V4+ ions with S = 1/2. From

the analysis of the zero-field thermodynamics like

specific heat and susceptibility the frustration ratio

J2/J1 may be obtained. However, an ambiguity re-

mains [3] which can be resolved by diagnosing the

high-field behaviour discussed below.

The 2D square lattice J1-J2 model in a magnetic

field is given by

H = J1 ∑
〈i j〉1

Si.S j + J2 ∑
〈i j〉2

Si.S j−h∑
i

Sz
i . (1)

Here J1 and J2 are the two exchange constants per

bond between nearest and next nearest neighbors on

a square lattice, respectively, and h = gμBH where

g is the gyromagnetic ratio, μB the Bohr magne-

ton, and H the magnetic field density. The phase

diagram is preferably characterized by introducing

equivalent parameters Jc = (J2
1 + J2

2 )
1
2 and the frus-

tration angle φ = tan−1(J2/J1).
This model has three possible classical magnetic

ground states (see Fig. 1) depending on φ : Fer-

romagnet (FM), Néel antiferromagnet (NAF) and

collinear antiferromagnet (CAF) [3]. The influence

of exchange frustration leading to enhanced quan-

tum fluctuations is strongest at the classical phase

boundaries where the CAF phase joins the NAF (

J2/J1 = 0.5, φ ≈ −0.15π) or FM (J2/J1 = −0.5,

φ ≈ 0.85π) phases. In fact, in these regions they

destroy long-range magnetic order [3] and establish

two new ordered states, namely a gapped columnar

dimer state at the CAF/NAF boundary and a gapless

spin nematic state at the CAF/FM boundary [5] as

shown by the grey sectors in Fig. 1.

Specific heat and susceptibility, also in finite

field, may be calculated for finite clusters using the

FTLM method to evalutate their respective cumu-

lant expressions [3]. Fig. 2 shows the field depen-

dence of CV (T,H) as a function of the frustration

angle φ at constant temperature T = 0.2Jc/kB. The

heat capacity is large in the disordered regions re-

flecting the high number of quasi-degenerate states.

Around J2/J1 = 1/2 (φ/π ≈ 0.15), a two-ridge

structure evolves with increasing field. Due to the

smallness of the saturation field, we currently can-

not decide whether such a structure also exists at

the “mirrored” (J2 →−J2) position in the phase di-

agram at J2/J1 = −1/2. When reaching the satu-

ration field, the heat capacity drops and eventually

vanishes due to the gap opening.

Fig. 2: Contour plot of the heat capacity for the 24-site clus-
ter at a fixed temperature T = 0.2Jc/kB as a function of the
frustration angle φ and the magnetic field density H.
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Fig. 3: Temperature dependence of the magnetic suscepti-
bility of BaCdVO(PO4)2. Dots denote the experimental re-
sult [7], the two curves denote a Curie-Weiss fit to the high-
temperature part (dashed line) and a fit using our finite-
temperature Lanczos data (solid line).

The magnetic susceptibility and the magnetiza-

tion at low temperatures of the new compound

BaCdVO(PO4)2 have been measured [7]. Fig. 3

displays a plot of the temperature dependence of

the magnetic susceptibility (dots) and a Curie-Weiss

fit applied to the high-temperature part of the data

(dashed line; 20K ≤ T ≤ 300K). In addition, we

have conducted a series of fits using our FTLM data

calculated on a 24-site cluster [4]. The best fit is

plotted in Fig. 3 (solid line). From this, we obtained

a frustration angle φ = 0.77π and an effective ex-

change Jc = 4.8K. (The latter was used to normal-

ize the experimental data for the plot.) This result is

in excellent agreement with Ref. [7], where a high-

temperature series expansion was used to determine

the exchange constants.

Investigation of the uniform magnetization leads

to a further understanding of the possible ground

states of the model [6]. It may be obtained both
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Fig. 4: Magnetization curves μ/μB = gm (= m/S) for var-
ious φ in the AF or disordered sectors (each curve offset by
0.2). Symbols: T = 0 Lanczos results for N = 16 (squares),
20 (diamonds), 24 (dots, circles) size clusters. Lines: first
order spin wave calculations. φ/π = 0.75, −0.21 corre-
spond to the possible CAF or NAF values of the Sr com-
pound. Magnetization curves strongly differ in the extent
of nonlinear deviation from the classical curve which corre-
sponds to φ/π =−0.5. Deep inside CAF or NAF regions the
agreement of spin wave and Lanczos calculations is good.
The values φ/π = 0.75, 0.17 are nearby or within the non-
magnetic sectors. At the CAF/NAF boundary the numeri-
cal data exhibit a plateau with m/S = μ/μB = 0.5 due to
three-magnon bound states. Lower inset shows the position
of plotted φ values in the phase diagram. Upper inset ex-
hibits the saturation field as function of φ (hs ≡ gμBHsat).
(From Ref. [6]).

from numerical Lanczos calculations as well as an-

alytical spin wave expansion starting from the three

magnetic phases. In the latter approach the har-

monic spin wave Hamiltonian is

H = NE0 +NEZP +∑
k

εk(h)α†
kαk , (2)

where α†
k creates magnons with a dispersion

εk(h) = S(ak + ck)
1
2 (ak + ck cosθc)

1
2 . (3)

With γk = 1
2(coskx + cosky) and γ̄k = coskx cosky,

the intra- and intersublattice interactions are given

by ak = 4[J1− J2(1− γ̄k)] and ck = −bk = 4J1γk,

respectively, for the NAF and by similar expressions

for the CAF [6]. The field-induced canting angle

θc of sublattice moments (with respect to the field

direction) decreases from θc = π
2 to θc = 0 when

the field increases form zero to the saturation field

hs(Jc,φ) (see upper inset of Fig. 4).

The ‘classical’ canting angle obtained from min-

imization of E0(h,θc) is given by cos θc
2 = h/hs re-

sulting in a linear magnetization m0 = S(h/hs). This

will be changed by the effect of zero point fluctua-

tions which have an energy

EZP =
1

2N ∑
k

[εk(h)−Sak] . (4)

The associated quantum corrections in the magne-

tization modify the linear classical behavior with

a correction term mZP = −∂EZP(h)/∂h. It is de-

termined by the dispersion εk(h) which becomes

very anomalous at the classical phase boundaries

CAF/NAF and CAF/FM [3]: The expression for the

magnetization including quantum corrections up to

order 1/S is given by [6]

m = S
h
hs

[
1−

1

hs

1

N ∑
k

ck

( ak + ck

ak + ck cosθc

) 1
2

]
. (5)

Because hs ∼ S the second term in Eq. (5) is for-

mally a 1/S correction to the linear classical term

m0 = S(h/hs). These corrections depend on the de-

gree of frustration measured by φ . In the strongly

frustrated regime around the classical phase bound-

aries the dispersion becomes flat along lines in the

BZ [3]. Thus, there is a dramatic increase of the

phase space for quantum fluctuations leading to

strong nonlinear corrections for the magnetization

(Fig. 4). Within the grey sectors of Fig. 1 magnetic

order breaks down and quantum fluctuations sta-

bilize spin-nematic (left) and stacked-dimer (right)

hidden order parameters.

Fig. 5 presents a plot of the experimental mag-

netization data [7], marked as open circles, and a

plot of data derived from exact diagonalization (full

symbols). The latter are determined from the zero-

temperature field dependence of the magnetization

for tiles of N = 16 (squares), N = 20 (diamonds),

and N = 24 sites (dots). Except for low magnetic

fields, and taking into account the finite-temperature

rounding of the experimental data around the satura-

tion field, the agreement with experiment is, again,

excellent. From our values for Jc and φ stated
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Fig. 5: Nonlinear magnetization curves due to quantum
fluctuations both from experiment and theory (ED) with
φ/π = 0.77 for the BaCd-compound. It is closest to the spin-
nematic sector in Fig. 1.

above, we get a saturation field Hsat = 4.1T, com-

pared to Hexp
sat = 4.2T from Ref. [7]. The latter value

gives a clear indication that BaCdVO(PO4)2, like

Pb2VO(PO4)2, is a collinear antiferromagnet since

for the Néel phase, according to the inset of Fig. 4,

the saturation field would be more than 50% higher,

namely HNAF
sat ≈ 6.5T.

Finite-size effects may play a role for the devia-

tions of the two curves at low fields H ≤ 0.4Hsat:

Experimentally, a linear, classical field dependence

is observed at the lowest fields, whereas the finite-

size gap and the corresponding Zeeman splitting

of the ground-state doublet determines the nonlin-

ear field dependence of the numerical values. We

note that for a value φ = 0.77π (Fig. 5) close to the

CAF instability a spin wave calculation for M(H)
no longer converges for small H [6]. Since the fully

polarized state is an eigenstate of the Hamiltonian,

finite size effects do not play a crucial role near the

saturation field.

Further insight into the quantum phases of the J1-

J2 model and its high-field behavior may be gained

from magnetocaloric properties [4]. The magne-

tocaloric coefficient Γmc(h) (the adiabatic cooling

rate) has a sharp anomaly from which hs may be

obtained. It is defined as the rate of adiabatic tem-

perature change with external field:

Γmc ≡

(
∂T
∂H

)
S
=−

T
CV

(
∂m
∂T

)
H

. (6)

In a paramagnet one has Γ0
mc = (T/H). There-

fore, Γ̂mc = Γmc/Γ0
mc is the magnetocaloric en-

hancement due to spin interaction effects. For the
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Fig. 6: Contour plot of the normalized magnetocaloric effect
Γmc/(T/H) for the 24-site cluster at a fixed temperature T =
0.2Jc/kB as a function of the frustration angle φ and the
magnetic field H.

J1-J2 model, Γ0
mc may be again calculated numeri-

cally for finite clusters with the cumulant expression

(
∂T
∂H

)
S

/(
T
H

)
=

−gμBH

〈
H Stot

z

〉
−〈H 〉

〈
Stot

z

〉
〈H 2〉−〈H 〉2

. (7)

In Fig. 6, a contour plot of the normalized magne-

tocaloric effect as a function of the applied field h
and the frustration angle φ is shown. The magne-

tocaloric enhancement ratio in FTLM and spin wave

approximation (using Eqs. (5, 6)) exhibit qualita-

tively similar features: A strong upturn and a pos-

itive peak just above the saturation field hs as well

as for T 
 Jc/kB a negative coefficient immediately

below hs [4].

It is instructive to consider the dependence of

Γ̂mc(h = hs;φ) on the frustration angle keeping the

field at saturation level where the maximum of Γmc

occurs. Note that the specific heat CV (T,H) (Fig. 2)

occurs in the denominator of Eq. (6). It shows a

strong enhancement close-by and in the quantum

phase regions (φ � 0.15π,φ � 0.85π) due to large

degeneracy. This overcompensates the simultane-

ous increase of the numerator in Eq. (6). There-

fore, the magnetocaloric enhancement Γ̂mc is only

moderate in these regions while its maxima occur

in the middle of the NAF or CAF phase sectors of

Fig. 1. The measurement of Γmc(h) should be an

excellent method to determine the saturation fields

Hsat in the J1-J2 compounds. Their absolute val-

ues for the known layered V-oxides range from 5 to

25 T [4].
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Fig. 7: Top (a): Static spin susceptibility χ(Q,0) along
[111] direction for different values of local exchange cou-
pling constant K < Kc (K = 0.45, 0.40, 0.30 from top to
bottom). The critical exchange coupling is Kc = 0.49eV and
2π/a � 0.76Å−1. (From Ref. [13]). Bottom (b): Static sus-
ceptibilities at q = Qc (full circles) and q = 0 (open circles)
as functions of temperature observed in INS and magnetic
measurements on LiV2O4 respectively. The solid line is a
fit to χ(Qc,T ) using the self-consistent solution of yQc(T ).
(From Ref. [14]).

Itinerant frustrated heavy fermion compound

LiV2O4

The metallic spinel compound LiV2O4 is the first

3d- heavy electron system discovered [12]. Be-

low 30K, a large specific heat and Pauli suscepti-

bility enhancement appears, the former yields γ =
C/T = 0.4J/(mol K2) at the lowest temperatures.

Many proposals to explain this behavior have been

put forward, including traditional Kondo-like sce-

narios. A special feature of the spinels and, there-

fore, of LiV2O4 is the fact that V atoms reside on

a pyrochlore lattice. Their average electron count

is nd = 1.5 per V corresponding to quarter-filling

(in the hole picture) of d-bands, i.e., the system

is far from the localized Mott limit. Within RPA

spin fluctuation theory based on ab-initio LDA elec-

tronic structure calculations it was found that pro-

nounced short-range spin correlations in the param-

agnetic metallic state of LiV2O4 appear.

The result of this calculation [13] for various sub-

critical exchange strengths is depicted in Fig. 7 for

the [111]-direction in q-space. Together with results

for [100] and [110] it shows that the susceptibility

is enhanced by approximately the same factor in

a critical shell, which is a nearly spherical region

with a radius Qc � 0.6Å−1 and a finite thickness

δQ� 0.45Å−1 in momentum space. This is the sig-

nature of frustration for itinerant spin-fluctuations.

Since the static χ(Q)� χ(Qc) is almost degenerate

in this shell, the system, although close to a mag-

netic instability, has no obvious way to select an

ordering wave vector. As a consequence, the dy-

namical susceptibility resonds with slowing down

(shifting the spectral function weight to very low en-

ergies) in the whole critical shell in the BZ. There-

fore, there is a large phase space of low energy spin

fluctuations which can renormalize the quasiparti-

cle mass. This situation is quite different from non-

frustrated lattices in which the enhancement of the

interacting susceptibility is usually sharply peaked

around the incipient magnetic ordering vector, pro-

viding only a small phase space and moderate quasi-

particle mass enhancement.

When Q is located within the critical shell the dy-

namical susceptibility for low energy spin fluctua-

tions is (Q = |Q|)

Im χ(Q,ω)� zQχ(Q)ω/Γ(Q) , (8)

where Γ(Q) and zQ < 1 are their energy width and

weight, respectively. Since χ(Q) is much enhanced

and Γ(Q) small in the critical shell the spectral

function around Qc is strongly peaked at low ener-

gies, in agreement with inelastic neutron scattering

(INS) results [16, 17]. The conduction electrons are

dressed with these low energy bosons leading to a

large spin fluctuation specific heat γsf = Csf/T be-

low 60 K given by

γsf =
k2

Bπ

N ∑
q

z(q)

h̄Γ(q)
. (9)

Since Γ(q) is small in the whole critical shell around

|q| = Qc this may lead to a large γsf. The absolute

scale of the spin fluctuation width Γ is estimated to

fall between 0.5meV < Γ < 1.5meV with a corre-

sponding γsf ranging between 100 and 300 in units

of mJ/(K2mol). This proves that slow spin fluctu-

ations over an extended momentum region, due to

frustration, may explain the size of the large γ value

in LiV2O4 and its heavy-fermion character.

At higher temperatures the spin fluctuation modes

of different q are coupled leading to a transfer of
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spectral weight from the critical region to the low-

momentum region. Experimentally it was observed

that above 60 K the susceptibility enhancement in

the critical shell around q = Qc vanishes and be-

comes equal to the value at q = 0. The effect of

mode coupling on the static susceptibility is de-

scribed within Moriya’s self- consistent renormal-

ization (SCR) theory [18]. With b(ω) = 1/(eω/T −
1) one finds

1

χ(q)T
=

1

χ(q)0
+

F̄Qc

N

∫ ∞

0

dω

2π
b(ω)∑

q′

Im χ(q′,ω) .

(10)

Here, F̄Qc is a mode-mode coupling constant for

the critical shell. The reduced inverse susceptibil-

ity may be written as y(Qc,T ) = 1
/
(2TAχQc(T ))

where TA � 220K is a scaling parameter. It is ob-

tained from a numerical solution of the SCR inte-

gral equation derived from Eq. (10) [14, 15]. The

resulting temperature dependence of the critical sus-

ceptibility χQc(T ) together with corresponding ex-

perimental results and those of q = 0 are presented

in Fig. 7b. It demonstrates that the critical enhance-

ment of χQc(T ) is rapidly reduced with temperature

and approaches the value of the FM point q = 0.

Since the ratio of scattering intensities at q = Qc and

q = 0 is proportional to the square of the suscepti-

bilities, Fig. 7b implies that the critical scattering in-

tensity at Qc is reduced by almost a factor 16 when

the temperature increases to 60 K. Recently it was

shown [15] that SCR theory can also explain the

temperature and pressure dependence of the NMR

relaxation rate in LiV2O4 sufficiently far from the

quantum critical point where a yet unidentified or-

der appears. Further investigations on the behavior

of the resistivity of this compound are in progress.
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