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The modeling of phase formation and crystal struc-
tures is still a major challenge in solid-state chem-
istry [1–3]. A crystal structure may sometimes be
guessed based on information from the chemical
composition, the crystal structure of a neighboring
phase and by applying chemical bonding concepts.
However, only first-principles calculations effec-
tively allow to model phase formation, crystal
structures and disorder phenomena.

Recently, we have been able to model the phe-
nomenon of preferential site occupation [4] for the
ternary C14 Laves phase Nb(Cr1–xCox)2, which is
formed in a large homogeneity range from
0.127(3) ≤ x z is based on the idea of computing the
partition function ZN for the Laves phase
Nb(Cr1–xCox)2 using the ordered superstructures of
Nb4Cr8–NCoN as an approximation. For a given N
between 2 and 6, one has to consider all possible
ways of distributing these N Co atoms among the
crystallographic sites 2a and 6h. If E denotes the
total energy, p the number of Co atoms occupying
the 2a site, M the number of symmetrically
inequivalent configurations and g the multiplicity,
then ZN is given by:

In this case, the calculation predicts a preferential
site occupation of the respective minority compo-
nent on the 2a site and a site occupation reversal at
approximately x = 0.5. The computed values are in
good agreement with the experimental data.

Since it was possible to model the short range
order in a ternary C14 Laves phase we have
extended the computations to calculate the unit cell
volume, the lattice parameters, the c/a ratio and the
phase stability of C15 and C14 phases along quasi-
binary sections AB2–AB’2. The computed proper-
ties are suitable for multiple uses: (i) they help to
minimize the number of required experiments
along the section AB2–AB’2 because the computa-
tion predicts the general curve shape; (ii) in the
case of the absolute values deviating from the
experiment, the calculated values can be calibrated

by a small number of experimental data; (iii) a sys-
tem can be probed for unexpected behavior.

Cell Geometry of Nb(Cr1–xCox)2

The lattice parameters a and c, the mean atomic vol-
ume and the c/a ratio have been calculated using the
partition function in the same way as the site occu-
pation factors. However, a supercell has been used
to increase the number of compositional data points.
First-principles total-energy calculations were per-
formed with the Vienna Ab-Initio Simulation
Package (VASP) [5] within the generalized gradient
approximation (GGA) [6]. The calculated data as
shown in Figure 1 are based on a 2x1x1 supercell,
i.e., Nb8Cr16–NCoN with N = 1– 16. 

The calculated unit cell parameters are slightly
smaller than the experimental data. The experi-
mental and the calculated data for the mean atomic
volume follow Vegard’s volume rule. Both data
sets can be brought into conformance by adding the
volume difference from one data point to the exper-
imental data. The curve shape of the c/a ratio for
C14 Nb(Cr1–xCox)2 can be described by an S-type
behavior with the inflection point at x ≈ 0.6 and the
minimum at x ≈ 0.8. The absolute values of the cal-
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Fig. 1: Experimental and calculated c/a ratio for C14
Nb(Cr1–xCox)2. The calculated data are temperature scaled
by using the experimental c/a ratio at the predicted mini-
mum. The inset shows the calculated and the experimental
mean atomic volume. The calculated data are not fitted to
the experimental for reasons of clarity.
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0.127(3) ≤ x ≤ 0.937(3) at 1100ºC. The ansatz is
based on the idea of computing the partition 
function ZN for the Laves phase Nb(Cr1–xCox)2

using the ordered superstructures of Nb4Cr8–NCoN

as an approximation. For a given N between 2 and 6,
one has to consider all possible ways of distributing
these N Co atoms among the crystallographic sites
2a and 6h. If E denotes the total energy, p the 
number of Co atoms occupying the 2a site, M the
number of symmetrically inequivalent configura-
tions and g the multiplicity, then ZN is given by:

(1)
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culated c/a ratio differ from the experimentally
obtained values. However, the general S-shape, the
location of the inflection point and the minimum
and maximum are well captured. The calculated
c/a ratio curve can be fitted to the experimental val-
ues by changing the temperature T in Eq. 1 using
the c/a ratio at the predicted minimum.

Phase Stability of Nb(Cr1–xCox)2 and 

Ta(V1–xFex)2

In order to determine the composition dependent
stability of the C14 and the C15 structure type
along the section NbCr2–NbCo2, the Gibbs energy
ΔG has been calculated. For cubic C15,
Nb8Cr16–NCoN was chosen as a model system. For
each N between 0 and 16, we have considered all
possible ways of distributing the N Co atoms
among the 16c site of the unit cell. First-principles
total-energy calculations were then performed only
for the symmetrically inequivalent configurations.
In a similar way, we calculated the total-energies
for C14 Nb(Cr1–xCox)2 based on Nb8Cr16–NCoN.
The same unit cell content as for the C15 phase was
obtained by using 2x1x1 supercells. The N Co
atoms were distributed among the 2a and 6h sites
of the hexagonal unit cell.
The Gibbs energy ΔG is given by:

ΔG = ΔH – TΔS (2)

The entropy for C15 and C14 Nb(Cr1–xCox)2 as dis-
ordered solution phases employing the ideal
solution model is given by:

ΔS = –R[x ⋅ ln(x) + (1– x) ⋅ ln(1 – x)] (3)

The heat of formation ΔH was then calculated for
the configuration with the lowest energy at each
point N from the total-energy of the compounds
and the total-energy of the elements Nb, Cr and Co:

(4)

The Gibbs energy of the stable configurations of
the C15 and the C14 structure at the composition
N/16 with N = 0–16 are shown in Figure 2. The
values are fitted with Redlich-Kister polynomials
of 4th order:

(5)

The phase boundaries associated with the first-
order transition between the phases with C15 and
C14 structure were located using the tangent con-
struction.

The calculations predict in agreement with the
experiment that NbCr2 and NbCo2 crystallize with
the cubic C15 structure type. A small solubility of
2 at.% Co in C15 NbCr2 is expected followed by a
two-phase field up to 12 at.% Co. Due to the limit-
ed number of data points, the location of the two-
phase field C14/C15 on the Co-rich side cannot be
determined by the tangent construction. However,
a small solubility for Cr in C15 NbCo2 is expected
from the data and a C14 phase Nb(Cr1–xCox)2

should form with a broad homogeneity range. The
predictions are in good agreement with the experi-
mental data as indicated by the top and bottom bars
in Figure 2.

As a second example, the system TaV2 –TaFe2

has been chosen to compare calculated with exper-
imental data. No information for this system is
available in the literature, except that TaV2 and
TaFe2 crystallize with the C15 [7] and the C14
structure type [8], respectively. TaFe2 is a para-
magnet very close to a magnetic instability with
strong ferromagnetic (FM) and antiferromagnetic
(AFM) spin fluctuations [9]. Hence, one can expect
that spin polarization plays an important role.

Fig. 2: Gibbs energy of C15 and C14 Nb(Cr1–xCox)2. The
solid lines are fits with Redlich-Kister polynomials. The top
and bottom bars indicate the experimentally determined
and the calculated width of the single phase fields of C15
and C14, respectively.
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However, due to the large number of
structural/magnetic configurations spin polariza-
tion was not included in the current calculations.

The Gibbs energy of the stable configurations of
the C15 and C14 phases are shown in Figure 3. The
calculation predicts a solubility of Fe in TaV2 up to
24 at.% and of V in C14 TaFe2 up to 39 at.%. An
additional phase change from C15 to C14 close to
TaV2 and the stability of C14 TaV2 is expected
from the calculated data. However, this is inconsis-
tent with the experimental results. It is known that
pseudo potential calculations tend to make wrong
predictions in the case of Laves phases containing
V [10]. If a full-potential code like FPLO is used
[11], C15 TaV2 is the stable polytype, in agreement
with the experiments.

A series of Ta(V1–xFex)2 alloys with various Fe
and V contents was prepared by arc-melting high
purity elements as starting materials and perform-
ing a subsequent heat treatment at 1150 °C for 30
days. After the annealing, the samples were
quenched in water. The composition of the samples
was determined with ICP-OES. Metallographic
examinations were carried out to check the phase
content. The maximal solubility of Fe in TaV2 at
1150 °C is 8 at.%, while the solubility of V in TaFe2

is 43 at.%. In addition, a ternary Laves phase of the
hexagonal C36 type has been observed with a small
homogeneity range of 0.29 ≤ x ≤ 0.32. Figure 4
shows the experimental results of the phase analy-
sis and the mean atomic volume plotted versus the
composition x. As expected, the mean atomic vol-
ume decreases with increasing Fe content and the
volume behaves according to Vegard’s volume rule.

The calculated values are in good agreement with
the experimental data, after the volume correction,
except for the C15 phase close to TaV2. The reasons
for the deviation of the calculated mean atomic vol-
ume close to TaV2 are yet unclear, but can be relat-
ed to the wrongly predicted stability of C14 TaV2.

Magnetism of Ta(V1–xFex)2

The change of the crystal structure is not the only
interesting issue in Ta(V1–xFex)2. In the C14 phase,
this system shows peculiar magnetic properties: In
the range 0.75 ≤ x ≤ 0.95 it was reported to be an
itinerant antiferromagnet, whereas for x > 0.95 the
magnetic susceptibility of the system, measured
with a magnetic field of 1T, did not show any phase
transition but very high values for a band magnet,
indicating the proximity of TaFe2 to a FM instabil-
ity [9]. In other words, TaFe2 is considered to be
paramagnetic (PM) with strong AFM and FM spin
fluctuations. This statement is supported by the
chemical and electronic similarity of TaFe2 and
NbFe2, which has been investigated in our institute
in some detail [12-15]. By adjusting the precise
composition within a narrow homogeneity range or
by applying hydrostatic pressure, NbFe2 can be
tuned from ferromagnetism via an intermediate
spin-density-wave (SDW) modulated state to a
quantum critical point (QCP). Since the atomic
volume of TaFe2 is about 13.25 Å3 and thus slight-
ly smaller than that of NbFe2 (13.35 Å3) we expect
TaFe2 to be closer to the QCP than NbFe2.

Fig. 3: Gibbs energy of C15 and C14 Ta(V1–xFex)2. The
solid lines are fits with Redlich-Kister polynomials. The
bottom bars indicate the width of the single phase fields of
C15 and C14.

Fig. 4: Experimental and calculated mean atomic volume
Vatom of Ta(V1–xFex)2 against the composition x. The bottom
bars indicate the experimentally determined width of the
single phase fields of C15, C36 and C14.
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in detail [12-15]. By adjusting the precise com -
position within a narrow homogeneity range or 
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To get insight into the magnetic properties of
Ta(V1–xFex)2 we have measured the temperature (T)
and field (B) dependencies of the magnetization
(M) of polycrystals with 0.7 ≤ x ≤ 1. The uniform
susceptibility χ = M/B at B = 1 T is plotted in
Figure 5 (upper panel) for selected samples and
temperatures from 300 K to 2 K: The arrows mark
the peak in χ at the Néel temperature TN, indicating
a phase transition from a PM state into a low-T
AFM state. At high and low V contents no phase
transition is observed and the ground state is para-
magnetic. However, there is a great difference
between the values of the susceptibility for x = 0.7
(red line) and x = 0.98 (grey line) at 2 K. In the
sample with x = 0.98 the susceptibility is enhanced
by spin fluctuations by a factor of ~ 240 (Stoner
factor) compared to the bare susceptibility estimat-
ed from band structure calculations. In NbFe2 this
factor is ~ 180 [13]. This value confirms that the

system at x ~ 1 is close to an FM instability. To
know how large the fluctuating moment is in this
sample, we have plotted χ-1 vs T in the lower panel
of Figure 5 to analyze the Curie-Weiss behavior:
The dashed line is a linear fit to the data yielding a
fluctuating moment of 1.04 μB which is much larg-
er than the induced magnetic moment of about
0.055 μB measured at 7 T (see Fig. 6). This is a
common property observed in all itinerant mag-
nets.

More evidence for the presence of the AFM state
is given by the field dependent magnetization
shown in Figure 6 for three PM samples and one
AFM sample with x = 0.75. This sample shows an
inflection point around 3 T emphasized in the inset
where we have plotted the derivative dM/dB vs B.
dM/dB shows a clear peak which shifts to lower
fields with increasing temperature, as expected for
an antiferromagnet.

From our susceptibility measurements with
B = 1 T we have determined the magnetic phase
diagram of Ta(V1–xFex)2 which is displayed in
Figure 7. The red points indicate the Néel temper-
atures observed in our experiments, while the black
ones have been extracted from Ref. [9], where the
susceptibility has also been measured at 1 T. A
clear AFM dome emerges in the PM phase of the
diagram. There is a certain systematic discrepancy
between these points, which is difficult to clarify. It
could be explained by the fact that our V content

Fig. 5: Upper panel: Temperature dependence of the dc
susceptibility χ of selected samples with 0.7 ≤ x ≤ 1 taken
at B = 1 T. The antiferromagnetic transition temperatures TN

are indicated by  arrows. Lower panel: χ–1 plotted versus
T to emphasize the Curie-Weiss behavior at low T: The
dashed line is a linear fit to the data for the x = 0.983 sam-
ple below 50 K.

Fig. 6: Magnetization taken at 5 K of two paramagnetic
samples with x = 1 and 0.70,  and an AFM sample with
x = 0.7  and TN = 18 K. Inset: Field derivative of the mag-
netization at different temperatures (2, 5, 10, 20, 30, 50 K)
inside and outside the AFM phase for the sample with
x = 0.7 :   The arrow indicates how the critical field which
suppresses the AFM state shifts to lower values with
increasing temperature. 
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has been estimated by chemical analysis while the
nominal one is given in Ref. [9]. However, if there
is a systematic difference in x, we would expect our
TN to be higher on one side and lower on the other
side of the dome maximum. The overall behavior is
consistent though.

Conclusion

The experimental determination of phase diagrams
is a tedious, expensive and time consuming work
because a large number of alloys have to be pre-
pared, homogenized and characterized. Due to the
ongoing improvements of theoretical methods like
Density Functional Theory (DFT) and CALPHAD
and due to the increasing amount of available com-
puting power, brute force computations like the
supercell approach become feasible, fast and
cheap. In this work it has been shown that DFT
computations in ternary Laves phases A(B’1–xB’’x)2

allow to make predictions about the phase stabili-
ties, the unit cell geometry and the site occupation
factors as a function of the composition. The com-
puted values usually exhibit an offset but can be
calibrated by a small number of experimental data.

The magnetic properties of the Ta(V1–xFex)2

series basically agree with those found in literature
and offer a great opportunity to study band-magnet
quantum criticality in a stoichiometric compound
at ambient pressure.

We are indebted to C. Geibel, Y. Yamada, and F. M.
Grosche for useful discussions. We also thank Sergej
Borisenko, who performed part of the magnetization
measurements in the context of a high-school BeLL
project. 
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Fig. 7: Magnetic phase diagram of Ta(V1–xFex)2. The red
points have been extracted by dc susceptibility measure-
ments with B = 1 T, whereas the black points are taken from
Ref. [9].
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