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We present recent results from our investigation of
the frustrated two-dimensional S = 1/2 next near-
est neighbor anisotropic Heisenberg antiferromag-
net on a square lattice as described by the J1a,b-J2
model [1, 2]. This model has a number of real-
izations in layered V4+ compounds [3–5]. Com-
bining the results of several experimental investi-
gations, the determination of the location of these
compounds in the phase diagram was possible [6–
8]. It was eventually found that all known com-
pounds are lying in the region of columnar anti-
ferromagnetic order, characterized by an ordering
vector �Q = (π,0) or (0,π). Strictly speaking, the
V4+ compounds all have slight orthorhombic distor-
tions, leading to a spatial anisotropy in the nearest-
neighbor exchange constants J1a and J1b along the
respective crystallographic directions.

Recently, results from inelastic neutron scatter-
ing (INS) on the low-energy excitations of the 122
Fe pnictides have shown that these can also be
described by a local-moment model with nearest-
and next-nearest neighbor exchange integrals, de-
spite the metallic nature of these compounds [9–12].
Here, a spatial anisotropy of the exchange parame-
ters has been introduced, too.

INS results also show that in the Fe pnictides,
well-defined spin excitations exist in the whole Bril-
louin zone, which suggests a local-moment picture
for the magnetic excitations to be applicable. The
experimentally observed size of the ordered mo-
ment is strongly reduced compared to predictions
from density-functional theory. In this report, we
summarize our results on the anisotropic frustrated
two-dimensional S = 1/2 Heisenberg model on the
square (or better rectangular) lattice. Within this
model, it seems natural to investigate to what extent
frustration can serve as an origin for the observed
moment reduction.

The Hamiltonian we discuss has the form

H = ∑
〈i j〉

Ji j�Si�S j −gμBH ∑
i

Sz
i , (1)

where Ji j = diag(J⊥i j ,J
⊥
i j ,J

z
i j), and Ji j = J1a or J1b if i

and j mark nearest-neighbor sites along the crystal-
lographic a and b directions, respectively, Ji j = J2
if i and j denote next-nearest neighbors, and the

sum runs over all nearest- and next-nearest neighbor
bonds. The magnetic field�h = gμB�H points along
the z direction in spin space. On each site i, we in-
troduce a local coordinate system, where the z axis
is oriented parallel to the local magnetic moment,
and express the spin operator products in Eq. (1) in
these coordinates.

For the classical ground-state energy, we get

Ecl = NS2
[
J⊥(�Q)−A(0)cos2 Θc

]
(2)

where J⊥(�Q) is the Fourier transform of the ex-
change constants perpendicular to the magnetic
field, Θc is the canting angle of the spins with
respect to the magnetic field given by cosΘc =
h/[2SA(0)], and

A(�k) = Jz(�k)+
1
2

[
J⊥(�k+ �Q)+ J⊥(�k− �Q)

]
−2J⊥(�Q). (3)

Minimizing Ecl(�Q) with respect to �Q yields the or-
dering vector �Q.

Linear spin-wave theory

Within the framework of linear spin-wave theory,
we expand the Hamiltonian around its classical limit
up to first order in 1/S. The result is

H = Ecl +Ezp +S∑
�k

E(h,�k)α†
�k

α�k, (4)

where Ecl is given by Eq. (2),

Ezp = NSJ⊥(�Q)+
S
2 ∑

�k

E(h,�k) (5)

is the zero-point energy contribution to the to-
tal ground state energy, and E(h,�k) is the field-
dependent excitation energy of a magnon with mo-
mentum�k, which is of the form

E(h,�k) =

{[
A(�k)−B(�k)cos2 Θc

]2

−
[
B(�k)

(
1− cos2 Θc

)]2
}1/2
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+C(�k)cosΘc, (6)

B(�k) = Jz(�k)− 1
2

(
J⊥(�k+ �Q)+ J⊥(�k− �Q)

)
,

C(�k) = J⊥(�k+ �Q)− J⊥(�k− �Q).

The ordered moment M is the ground-state ex-
pectation value of the z component of the spin �S in
local coordinates and can be expressed as

M = S

[
1− 1

2S

(
1
N ∑

�k

A(�k)−B(�k)cos2 Θc

E(h,�k)
−1

)]

(7)
in units of gμB. Due to quantum fluctuations M < S
is smaller than in the classical case, except for the
ferromagnet, which is an eigenstate of the Hamilto-
nian.

In a similar way we can express the magnetiza-
tion m as the z component of the spin�S in the global
coordinate system, which is equivalent to a projec-
tion of the ordered moment onto the direction of the
magnetic field. We get

m = ScosΘc

⎡
⎣1+

1
2S

1
N ∑

�k

B(�k)
(

A(�k)−B(�k)
)

A(0)E(h,�k)

⎤
⎦ ,

(8)
in units of gμB, again up to first order in 1/S.

We note that the results presented in this section
are in no way specific to the J1a,b-J2 model, but ap-
ply to arbitrary spin Hamiltonians on Bravais lat-
tices, provided the presence of the applied magnetic
field does not destroy the U(1) spin symmetry as-
sumed here.

Exact diagonalization

We have also developed a new finite-size scaling
method applied to exact-diagonalization data ob-
tained from diagonalizing the Hamiltonian matrix
derived from Eq. (1) on small clusters, providing us
with an—apart from the small tile size—unbiased
method to determine the ground-state properties of
the model.

For a unique description of the lattice tiling, we
use matrices in hermite normal form (HNF),

H =

(
h11 h12
0 h22

)
(9)

with integer hi j representing tiles with the special
edge vectors �h1 = (h11,h12) and �h2 = (0,h22) and
area or number of sites N = h11h22.

�1.0 �0.5 0.0 0.5 1.0
�0.8

�0.7

�0.6

�0.5

�0.4

�0.3

�0.2

Φ � Π

E
0

Θ � Π � 0.25
FM NAF CAF FM

ED
LSW

Classical

Fig. 1: The ground-state energy as function of the frustra-
tion angle φ for the isotropic model with fixed θ = π/4 .
The classical energy is shown as dashed line, and the spin-
wave results including zero-point fluctuations are presented
as solid line. Dots indicate the values for the ground-state en-
ergy obtained from extrapolating our exact-diagonalization
data. The inset shows a sketch of the classical phase dia-
gram as a function of φ and θ .

Secondly, we introduce the compactness or
squareness of a tile,

ρ =
4× area

perimeter2 , (10)

which is to be determined from the area and circum-
ference of the most compact tile out of the class of
tiles represented by the HNF matrix H.

With this scheme, we find 816 different classes of
tiles with area N between 8 and 32.

The classical J1a,b-J2 model on the square lat-
tice has four ground states with ordering wave vec-
tors �Q = (0,0), (π,π), and �Q = (π,0) or (0,π),
the corresponding phases we abbreviate with FM,
NAF, CAFa, and CAFb, respectively. Although in
the quantum case the corresponding wave functions,
except for the ferromagnet, are not eigenstates of the
Hamiltonian, it is important that the tilings of the
infinite lattice are chosen such that these states cor-
responding to the classically ordered phases are not
suppressed when applying periodic boundary con-
ditions. We therefore select, for each even tile area
and for each classical phase, the tile having the max-
imum squareness to be included into the finite-size
scaling analysis.

The ordered moment, which is strictly speaking a
property of the infinite lattice only, can be obtained
indirectly from the static structure factor

SN(�Q) =
1

N

N

∑
i, j=1

〈
�Si�S j

〉
ei�Q(�Ri−�R j), (11)

M2(�Q) = lim
N→∞

SN(�Q), (12)
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Fig. 2: The extrapolated ordered moment as function of the
frustration angle, for (top) the isotropic θ = π/4 case and
(bottom) the maximally anisotropic case with θ = 0. The
gray-shaded areas in the top plot represent the range of frus-
tration angles φ where the relative error of M2(�Q) is above
0.1.

where we set N = N(N +1/S), and independently
from the long-distance correlation function

lim
|�Ri−�R j|→∞

∣∣∣〈�Si�S j

〉∣∣∣= ∣∣∣〈�Si

〉〈
�S j

〉∣∣∣= M2(�Q). (13)

Results

We parameterize the exchange constants according
to

J1a =
√

2Jc cosφ cosθ ,
J1b =

√
2Jc cosφ sinθ , (14)

J2 = Jc sinφ ,

Jc =

√
1
2
(
J2

1a + J2
1b

)
+ J2

2 ,

introducing an energy scale Jc, a frustration angle φ
and an anisotropy ratio θ (not to be confused with
the canting angle Θc).

Fig. 1 displays the ground-state energy as a func-
tion of the frustration angle φ for the isotropic J1a =
J1b case with θ = π/4. The dotted line displays the
classical ground-state energy obtained from Eq. (2),
the solid line shows the result from linear spin-wave
theory, Eq. (4). Dots denote the values obtained
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Fig. 3: Uniform magnetic moment m per site as a function
of the applied magnetic field h normalized to the saturation
field hs = 2SA(0) at three different frustration angles in the
CAF phases, φ/π = 0.16 (near NAF), 0.25 (CAFa), and 0.65
(CAFb near FM). Between each pair of adjacent curves an
offset Δm = 0.1 is inserted. The solid lines denote the field
dependence in the isotropic case, θ = π/4, the dashed lines
denote the maximally anisotropic case, θ = 0.

from extrapolating our exact-diagonalization data to
the thermodynamic limit. The agreement between
linear spin-wave theory and exact diagonalization is
remarkably well, apart from the regions around the
classical borders of the CAF phase.

Fig. 2 shows the dependence of the ordered mo-
ment on the frustration angle φ , again for the
isotropic model with θ = π/4 in the top part, and
for the anisotropic model with θ = 0 at the bot-
tom. The solid lines denote the results from linear
spin-wave theory, Eq. (7), the dots represent the ex-
trapolated values derived from the structure factor
according to Eq. (11). Compared to the classical,
constant value Mcl = S = 1/2, the ordered moment
is strongly reduced due to enhanced quantum fluc-
tuations already at moderate frustration. In fact M
vanishes around the classical borders of the colum-
nar phase, indicating the emergence of two nonmag-
netic phases not discussed here. However, introduc-
ing a spatial anisotropy (θ �= π/4) lifts the degen-
eracy between the two columnar phases CAFa and
CAFb and stabilizes the ordered moment.

A similar effect can be observed in the field de-
pendence of the uniform magnetization m, Eq. (8)
shown in Fig. 3 for three different values of the
frustration parameter φ . The solid lines in the plot
denote m(h) for the isotropic model [13]. In par-
ticular near the crossover to the nonmagnetic re-
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Fig. 4: Comparison of saturation fields predicted by exact
diagonalization (ED, dots and diamonds) and spin-wave
theory (LSW, squares and diamonds), and determined
from high-field experiments [14] (triangles). The com-
pounds are (1) PbZnVO(PO4)2, (2) Na1.5VOPO4F0.5,
(3) Pb2VO(PO4)2, (4) SrZnVO(PO4)2, and
(5) BaCdVO(PO4)2. The agreement with the satura-
tion fields for the columnar phase (CAF) is very good,
giving a direct proof that all compounds investigated
undergo columnar ordering at low temperatures.

gions, the curves are strongly nonlinear, suppressed
from the classical linear behavior mcl = Sh/hs for
h ≤ hs = 2SA(0). This effect, which is due to zero-
point fluctuations of the ground state, too, is re-
duced when introducing a spatial anisotropy, see the
dotted lines in the figure.

Fig. 4 displays a comparison of the saturation
fields predicted by exact diagonalization and spin-
wave theory for the columnar and Néel antifer-
romagnetic phases with the observed experimen-
tal values derived from high-field measurements
for five different V4+ compounds. The predicted
theoretical values are based on fits of our exact-
diagonalization data and of a high-temperature se-
ries expansion [14–16] to the temperature depen-
dences of the low-field susceptibilities. The exper-
iments agree surprisingly well with the predicted
CAF values, demonstrating that all compounds or-
der in a columnar magnetic structure at low temper-
atures.

Summary

We have done an extensive analysis of the J1a,b-J2
model both with linear spin-wave theory and nu-
merical exact diagonalization. The agreement be-
tween the two approaches was found to be generally
good, and both methods predict the strong suppres-
sion and eventual breakdown of the ordered moment
in the transition regions at the borders of the colum-
nar phases as a function of frustration. A spatial
anisotropy has a stabilizing effect on the ordered

moment in the columnar phases. Subject of cur-
rent investigations are quantitative analysis of an in-
crease of the three-dimensional magnetic ordering
temperature TN in finite fields, reflected in a field-
induced stabilization of the ordered moment, which
was recently observed in Cu(pz)2(ClO4)2 [17].
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